ili – -Translation – Keybot Dictionary

Spacer TTN Translation Network TTN TTN Login Deutsch Français Spacer Help
Source Languages Target Languages
Keybot 2 Results  www.mbi-berlin.de
  MBI: Max-Born-Institut ...  
This is reported by the Berlin researchers Peter Gaal, Wilhelm Kuehn, Klaus Reimann, Michael Woerner and Thomas Elsaesser of the Max Born Institute and Rudolf Hey of the Paul Drude Institute in the latest issue of the magazine Nature (Vol. 450, Page 1210).
Der Kavalierstart von Elektronen in einem Kristall bleibt nicht ohne Folgen für ihr weiteres Schicksal. Das berichten die Berliner Forscher Peter Gaal, Wilhelm Kühn, Klaus Reimann, Michael Woerner und Thomas Elsässer vom Max-Born-Institut sowie Rudolf Hey vom Paul- Drude-Institut in der jüngsten Ausgabe der Zeitschrift Nature (Bd. 450, Seite 1210). Sie untersuchten die ultraschnelle Bewegung von Elektronen in einem Galliumarsenidkristall, der für kurze Zeit einem sehr hohen elektrischen Feld ausgesetzt wurde. Dieses auch konzeptionell neue Experiment zeigt erstmals eine kollektive, ultrahochfrequente Zitterbewegung der Elektronen, die zusätzlich zur bekannten räumlichen Drift dieser Teilchen auftritt. Der neu entdeckte Effekt könnte bei der Miniaturisierung von elektronischen Bauteilen eine wichtige Rolle spielen.
  Max-Born-Institut, Aktu...  
116, 075504 (2016)), researchers from the Max-Born-Institut in Berlin together with colleagues from the Paul-Drude-Institut, Berlin, and the École Normale Supérieure, Paris, have demonstrated a new method for sound amplification in a specially designed semiconductor structure consisting of a sequence of nanolayers.
In einer kürzlich erschienenen Veröffentlichung (K. Shinokita et al., Phys. Rev. Lett. 116, 075504 (2016)), haben Forscher aus dem Max-Born-Institut in Berlin zusammen mit Kollegen aus dem Paul-Drude-Institut, Berlin und der École Normale Supérieure, Paris, eine neue Methode für die Verstärkung solch hochfrequenter Schallwellen gezeigt. In einer speziell entwickelten Halbleiter-Struktur, die aus einer Folge von Nanoschichten besteht, werden Schallwellen mit einer Frequenz von 400 GHz mit kurzen optischen Impulsen aus einem Laser erzeugt und nachgewiesen. Der Schall wird durch Wechselwirkung mit einem elektrischen Strom verstärkt, der durch den Halbleiter in der gleichen Richtung wie die Schallwellen fließt. Diese Verstärkung basiert auf einen Prozess namens "SASER" (Sound Amplification by Stimulated Emission of Radiation), vollkommen analog zur Verstärkung des Lichtes in einem Laser (Light Amplification by Stimulated Emission of Radiation). Die Schallwelle regt Elektronen, die sich mit einer Geschwindigkeit höher als die Schallgeschwindigkeit bewegen, dazu an, von einem Zustand hoher Energie in einen Zustand niedrigerer Energie zu gehen und dadurch die Schallwelle stärker zu machen. Um eine Netto-Verstärkung zu erzielen, ist es notwendig, dass es mehr Elektronen in dem Zustand hoher Energie als in dem niedriger Energie gibt. Auf diese Weise wird eine Schallwelle mit einer Frequenz von 400 GHz um den Faktor zwei verstärkt.