boa – -Translation – Keybot Dictionary

Spacer TTN Translation Network TTN TTN Login Deutsch Français Spacer Help
Source Languages Target Languages
Keybot 5 Results  www.hc-sc.gc.ca  Page 10
  L'ammoniac dans l'eau p...  
BOA
AOB
  L'ammoniac dans l'eau p...  
La consommation et la décomposition des chloramines dans le réseau de distribution libèrent de l'ammoniac libre qui, avec l'ammoniac pénétrant dans le réseau, alimente la croissance des BOA et favorise la nitrification (Skadsen, 1993; Vikesland et coll., 2001, 2006; Kirmeyer et coll., 2004; Chowdhury et coll., 2006; Wilczak, 2006b).
The initial Cl2:NH3-N weight ratio, used to form monochloramine (the preferred chloramine species) affects the level of the free ammonia available in the distribution system (Fleming et al., 2005, 2008). Kirmeyer et al. (2004) suggested that the Cl2:NH3-N ratio should generally be maintained between 4.5:1 and 5:1 in the plant effluent to enhance the formation of monochloramine and reduce the concentration of free ammonia in the distribution system. This study suggested that a minimization of free ammonia entering the distribution system to a concentration below 0.1 mg NH3-N/L and preferably below 0.05 mg NH3-N/L is an important optimization goal to reduce the potential for nitrification. The ammonia concentration in the source water should be accounted for when establishing the ammonia dosage for chloramine formation (Muylwyk, 2009; Shorney-Darby and Harms, 2010). Wolfe et al. (1990) reported that using Cl2:NH3-N ratio of 3:1 results in approximately 0.2 mg/L free ammonia when maintaining a total chlorine concentration of 1.5 mg/L in the distribution system. Bouwer and Crowe (1988) demonstrated that an ammonia-nitrogen concentration of 0.25 mg/L would promote the growth rate of nitrifying organisms in both the treatment plant and the distribution system. An optimization of Cl2:NH3-N ratio should ensure that Health Canada's guideline for chloramines is not exceeded (Health Canada, 1995).
  L'ammoniac dans l'eau p...  
Comme la croissance des BOA et des BON (organismes nitrifiants) est lente, il faut laisser s'écouler une durée suffisante pour permettre la colonisation des filtres bioactifs avant qu'ils ne deviennent efficaces pour l'élimination de l'ammoniac.
Several authors have reported on full-scale biological treatment to oxidize ammonia in the source water, achieving an oxidation rate greater than 90% (Rittmann and Snoeyink, 1984; Rogalla et al., 1990; Janda and Rudovský, 1994; Andersson et al., 2001; Hossain et al., 2007; Lytle et al., 2007; White et al., 2009). The nitrification process is regarded as the pathway to oxidize ammonia in the biological treatment. As ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) (i.e., nitrifiers) are slow-growing organisms, biologically active filters require a period of colonization before efficient ammonia removal is reached. During this period, ammonia breakthrough and nitrite formation can have adverse impacts on water quality (Lytle et al., 2007; McGovern and Nagy, 2010). Based on pilot study results, Lytle et al. (2007) reported that a colonization to obtain complete nitrification can be achieved in new filters in less than 3 months. This was achieved by constantly running aerated raw water through the filters to promote bacterial regrowth. In order to have complete nitrification a stoichiometric oxygen (O2) demand of 4.33 mg O2/mg NH4+ -N is required. At ammonia concentrations exceeding this oxygen demand, the biological treatment process requires a constant oxygen feed (Lytle et al., 2007; White et al., 2009).