qualitativ – -Translation – Keybot Dictionary

Spacer TTN Translation Network TTN TTN Login Deutsch Français Spacer Help
Source Languages Target Languages
Keybot 6 Results  www.tour-taxis-residential.com
  Application Notes: Elek...  
Für Kontaktierungen in modernen IC-Gehäusen werden die ehemals allgegenwärtigen, qualitativ hochwertigen aber leider schädlichen SnPb-Lote (solder bumps) heute durch bleifreie Technologien wie SnAgCu-Legierungen ersetzt.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
  Application Notes: Mate...  
Für Kontaktierungen in modernen IC-Gehäusen werden die ehemals allgegenwärtigen, qualitativ hochwertigen aber leider schädlichen SnPb-Lote (solder bumps) heute durch bleifreie Technologien wie SnAgCu-Legierungen ersetzt.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
  Lösungen: Bauelemente |...  
Für Kontaktierungen in modernen IC-Gehäusen werden die ehemals allgegenwärtigen, qualitativ hochwertigen aber leider schädlichen SnPb-Lote (solder bumps) heute durch bleifreie Technologien wie SnAgCu-Legierungen ersetzt.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
  Industrielle Messtechni...  
Für Kontaktierungen in modernen IC-Gehäusen werden die ehemals allgegenwärtigen, qualitativ hochwertigen aber leider schädlichen SnPb-Lote (solder bumps) heute durch bleifreie Technologien wie SnAgCu-Legierungen ersetzt.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.
Due to growing restrictions on the use of lead in electronic products, efforts have been made to find appropriate substitutes. In the advanced IC packaging industry, the formerly ubiquitous, high-quality – but hazardous – eutectic SnPb solder bumps are now gradually being replaced by lead-free technology, such as SnAgCu alloy solder bumps. Because these new alloys require a certain composition in order to assure solderability and other mechanical properties, they must be measured precisely.