adat – -Translation – Keybot Dictionary

Spacer TTN Translation Network TTN TTN Login Deutsch Français Spacer Help
Source Languages Target Languages
Keybot 8 Results  santosmonteiro.com
  BRC  
A molekuláris biológiai vizsgálati módszerek fejlődésének köszönhetően a sejt alkotóiról és a köztük lévő kapcsolatokról hatalmas mennyiségű adat vált elérhetővé az elmúlt években. Ugyanakkor ahhoz, hogy a nagyléptékű adatsorokból megértsük a sejtek működését, új, rendszerszemléletű megközelítésekre van szükség.
(ii) Can we predict the genetic basis (i.e. the underlying genes) of adaptive evolution? Because metabolic evolution often capitalizes on the weak side activities of preexisting enzymes (i.e. underground reactions), we hypothesize that a detailed knowledge of an organism’s ‘underground metabolism’ may enable the computational prediction of which genes drive adaptation toward new metabolic capabilities. To test this notion, we computationally reconstruct the network of known underground enzyme activites in E. coli and analyse its evolutionary potential using both computational tools and genome-wide enzyme overexpression screens.
  BRC  
A genom metilációs mintázata (a metilom) összefügg a sejt funkciójával, a szövetspecifikus génkifejeződéssel. Egyre több adat van arra, hogy egyes gének abnormális metilációja része egyes betegségek, így pl. a rák patogenezisének.
Cytosine-5 methylation of 5’-CG-sites in the genome is an important component of epigenetic regulation in higher eukaryotes. DNA methylation plays key roles in a number of biological phenomena such as X-chromosome inactivation, genomic imprinting and inactivation of genomic parazites. The pattern of genomic DNA methylation (the methylome) correlates with the function of the cell and with tissue-specific gene expression. There is an increasing body of evidence supporting the role of aberrant DNA methylation in the pathogenesis of several diseases including cancer.
  BRC  
Napjainkban a nagykapacitású molekuláris biológiai kísérleti technikák egyre általánosabbá váló alkalmazása hatalmas mennyiségű feldolgozatlan adat felhalmozódásához vezetett a különféle biológiai adatbázisokban.
The identification of the Tribbles family members’ role as regulators of signal processing systems and physiological processes, including development, together with their potential involvement in diabetes and cancer has generated considerable interest in these proteins. Tribbles have been reported to regulate the activation of numerous intracellular signaling pathways, with roles extending from mitosis and cell activation to apoptosis and modulation of gene expression. Within the framework of an international collaboration with the Cardiovascular Research Unit of the University of Sheffield (UK) we are involved in the bioinformatics investigation of the Tribbles family genes and proteins. In addition to the classical bioinformatics techniques we are also applying modern data mining approaches using the publicly available repositories of high throughput transcriptomics experiments (GEO, Array express).
  BRC  
A csoportnak komoly tapasztalatai vannak a nagy kapacitású kísérleti technológiákat alkalmazó modern genomikai vizsgálatok során keletkező a hatalmas mennyiségű kísérletes adat rendszerezett tárolásának megszervezésében és bioinformatikai kiértékelésében.
The Bioinformatics Group has special expertise in large-scale bioinformatics data management systems that have become an integrating force in systems biology, by providing common platforms and databases for different high-throughput experimental technologies. One of the major focus points of our ongoing research activity is the bioinformatics analysis of experimental data produced by next generation sequencing based transcriptome profiling studies. We are participating in several collaborative projects utilizing RNA-seq or Deep-SAGE techniques for identifying marker genes involved in different pathological conditions. We are also involved in the data processing of targeted resequencing experiments conducted to identify novel disease causing DNA polymorphisms implicated in different inherited heart disorders like hypertrophic cardiomyopathy or long QT syndrome and in the most common, genetically acquired, life-shortening chronic illness cystic fibrosis.
  BRC  
Kutatásaik egy jól körvonalazható része a motoros idegrendszer stressz-ingerekre adott válaszainak elemzésére irányul, amit eredményeik általánosíthatóságának veszélyeztetése nélkül tehetnek meg, hiszen – legalább is a felfedező jellegű kutatások szempontjából – a motoneuronális degeneráció az általában vett idegi degeneráció egy vizsgálati modelljének tekinthető. Ezt számos irodalmi adat támasztja alá.
Without jeopardizing the generalization of the results, a well-defined part of the research of the group is focused on the alterations of the motor system in stress conditions, since from the aspect of explorative research its degeneration can be observed as a prototype of neurodegeneration. Indeed, even though their primary cause is mostly unknown several common mechanisms have been identified, which contribute to the loss of neurons during degeneration. These include excitotoxicity, oxidative damage, mitochondrial dysfunction, protein misfolding and aggregation, defects in axonal transport, immune-inflammatory dysfunction, impairment of the blood brain or spinal cord barrier (BBB, BSCB) and calcium mediated toxicity. According to a relatively new, but well-supported hypothesis, dysfunction of the BBB or BSCB is not only a consequence, but an active component, or even the starting point of some of these diseases. Therefore, one of the main research directions of the Molecular Neurobiology Unit is focused on understanding how the neurovascular unit functions on the molecular level in physiological and pathological conditions. Our research is aligned along two main topics. On the one hand, we aim at clarifying the role of the neurovascular unit in inflammation-associated conditions, like neurodegenerative disorders or aging. On the other hand, since the central nervous system parenchyma lacks classical lymphatic circulation, metastatic tumor cells can primarily reach the central nervous system through the blood-brain barrier. Therefore, our goal is to decipher the mechanisms of transmigration of tumor cells with the final purpose of preventing formation of brain metastases.
  BRC  
Kutatásaik egy jól körvonalazható része a motoros idegrendszer stressz-ingerekre adott válaszainak elemzésére irányul, amit eredményeik általánosíthatóságának veszélyeztetése nélkül tehetnek meg, hiszen – legalább is a felfedező jellegű kutatások szempontjából – a motoneuronális degeneráció az általában vett idegi degeneráció egy vizsgálati modelljének tekinthető. Ezt számos irodalmi adat támasztja alá.
Without jeopardizing the generalization of the results, a well-defined part of the research of the group is focused on the alterations of the motor system in stress conditions, since from the aspect of explorative research its degeneration can be observed as a prototype of neurodegeneration. Indeed, even though their primary cause is mostly unknown several common mechanisms have been identified, which contribute to the loss of neurons during degeneration. These include excitotoxicity, oxidative damage, mitochondrial dysfunction, protein misfolding and aggregation, defects in axonal transport, immune-inflammatory dysfunction, impairment of the blood brain or spinal cord barrier (BBB, BSCB) and calcium mediated toxicity. According to a relatively new, but well-supported hypothesis, dysfunction of the BBB or BSCB is not only a consequence, but an active component, or even the starting point of some of these diseases. Therefore, one of the main research directions of the Molecular Neurobiology Unit is focused on understanding how the neurovascular unit functions on the molecular level in physiological and pathological conditions. Our research is aligned along two main topics. On the one hand, we aim at clarifying the role of the neurovascular unit in inflammation-associated conditions, like neurodegenerative disorders or aging. On the other hand, since the central nervous system parenchyma lacks classical lymphatic circulation, metastatic tumor cells can primarily reach the central nervous system through the blood-brain barrier. Therefore, our goal is to decipher the mechanisms of transmigration of tumor cells with the final purpose of preventing formation of brain metastases.