zilver – -Translation – Keybot Dictionary

Spacer TTN Translation Network TTN TTN Login Deutsch Français Spacer Help
Source Languages Target Languages
Keybot 7 Results  www.uantwerpen.be
  Onderzoek - Universitei...  
Karakterisering van sulfidelagen op zilver-koperlegeringen en de hieruit gevormde gekleurde film die na behandeling met atmosferisch plasma ontstaat.
Characterisation of sulphide layers on silver-copper alloys and of yellowish films that are formed during atmospheric plasma treatment of tarnished silver
  Onderzoek - Universitei...  
Daarnaast worden nanoporeuze materialen met fotokatalytische activiteit onder zichtbaar licht ontwikkeld om een hogere conversie en licht-efficiëntie te bekomen. Dit wordt verwezenlijkt door dopering met koper en stikstof enerzijds en depositie van goud en zilver anderzijds.
The influences of the reactor parameters and the material properties of nanoporous Ti-catalysts on the conversion, selectivity and light efficiency will be examined for the photocatalytic reduction of CO2 with water to methanol. In addition, nanoporous materials with photocatalytic activity under visible light will be developed in order to obtain a higher conversion and light efficiency. On the one hand this will be accomplished by doping with copper and nitrogen, on the other hand by the deposition of gold and silver.
  Onderzoek - Universitei...  
Het doel van dit project is begrijpen waarom er een gele film ontstaat nadat zwart geworden zilver-koperlegeringen met plasma worden gereinigd. Na plasmabehandeling van zilverkoperlegeringen met een zilvegehalte lager dan 97 m% ontstaat er namelijk een gele film waarvan de kleurintensiteit met het kopergehalte toeneemt.
The aim of this project is to understand why yellowish films are formed during plasma cleaning of tarnished silver-copper alloys. The intensity of these films for alloys containing less than 97 w% of silver increases with the amount of copper in the alloy. In order to understand this phenomenon both sulphide layers and yellowish films will be analysed in detail.
  Onderzoek - Universitei...  
Zilver aanwezig in fotografische materialen oxideert, migreert en reduceert in de emulsie waardoor degradatie van het beeld ontstaat. Dit doctoraatsproject onderzoekt deze wijzigingen van zilver via elektronenmicroscopie en vergelijkt het degradatieproces voor en na verschillende conserveringsbehandelingen met speciale aandacht voor de recent ontwikkelde plaatselijke atmosferische plasma reiniging.
Silver present in photographic materials oxidizes, migrates and reduces in the emulsion causing degradation of the image. This PhD project investigates these modifications of silver by means of electron microscopy and compares the degradation process before and after different treatment methods, e.g. local atmospheric plasma cleaning. As a result the most appropriate treatment method for silver oxidation in photographic materials will be suggested after quantitative analyses.
  Onderzoek - Universitei...  
Zilver aanwezig in fotografische materialen oxideert, migreert en reduceert in de emulsie waardoor degradatie van het beeld ontstaat. Dit doctoraatsproject onderzoekt deze wijzigingen van zilver via elektronenmicroscopie en vergelijkt het degradatieproces voor en na verschillende conserveringsbehandelingen met speciale aandacht voor de recent ontwikkelde plaatselijke atmosferische plasma reiniging.
Silver present in photographic materials oxidizes, migrates and reduces in the emulsion causing degradation of the image. This PhD project investigates these modifications of silver by means of electron microscopy and compares the degradation process before and after different treatment methods, e.g. local atmospheric plasma cleaning. As a result the most appropriate treatment method for silver oxidation in photographic materials will be suggested after quantitative analyses.
  Onderzoek - Universitei...  
De lichtefficiëntie zal op twee verschillende methodes geoptimaliseerd worden. De eerste methode is via het modificeren van standaard TiO2 met plasmon-actieve zilver nanostructuren. Deze nanostructuren vertonen surface plasmon resonance (SPR) in het UV gebied, wat een significante elektrische near-field versterking met zich meebrengt.
Air pollution is one of the problems that has attracted specific attention since the start of the 21st century. Volatile organic compounds (VOCs), originating from furniture or building materials amongst others, are an important class of pollutants and the concentration indoors are often several times higher than outdoors. The main goal is the complete mineralization of VOCs based on a photocatalytic oxidation process which can be carried out under mild reaction conditions (low pressure and temperature). The methodology that will be used is to transfer the VOCs from the gas phase to the aqueous phase by means of a scrubber to ensure an efficient photocatalytic degradation under UV light. The light efficiency will be optimized based on two different methods. The first method is via modification of standard TiO2 with plasmonic silver nanostructures. These nanostructures display surface plasmon resonance (SPR) in the UV part of the spectrum, which entails a significant electric near-field enhancement. The build-up of these intense local electric fields allows an efficient concentration of the incident photon energy in small volumes near the nanostructures. Since the rate of electron-hole pair formation is proportional to the intensity of the electric field, a drastic increase in charge carrier formation occurs. In order for this plasmonic "lens effect" to work, an energy match between the bandgap energy of the semiconductor and the energy associated with the SPR is required, which is the case for silver nanostructures. A second method to increase the UV light efficiency is by means of an innovative reactor design. A scrubber will be used to transfer the contaminated air flow to the aqueous phase leading to an enrichment of the VOCs in the aqueous phase. After that, the VOCs will be photocatalytically degraded in the aqueous phase, which is a better known concept than degradation in gas phase. The VOC degradation will occur via an optimized reactor design in which a UV transparent capillary tube is coated on the inside with photoactive material. This tube will be winded around a UV light source. In this way, there is a large contact time between pollutant and catalyst. Furthermore, this design ensures an active washing of the catalyst surface avoiding possible deactivation of the catalyst.
  Onderzoek - Universitei...  
De lichtefficiëntie zal op twee verschillende methodes geoptimaliseerd worden. De eerste methode is via het modificeren van standaard TiO2 met plasmon-actieve zilver nanostructuren. Deze nanostructuren vertonen surface plasmon resonance (SPR) in het UV gebied, wat een significante elektrische near-field versterking met zich meebrengt.
Air pollution is one of the problems that has attracted specific attention since the start of the 21st century. Volatile organic compounds (VOCs), originating from furniture or building materials amongst others, are an important class of pollutants and the concentration indoors are often several times higher than outdoors. The main goal is the complete mineralization of VOCs based on a photocatalytic oxidation process which can be carried out under mild reaction conditions (low pressure and temperature). The methodology that will be used is to transfer the VOCs from the gas phase to the aqueous phase by means of a scrubber to ensure an efficient photocatalytic degradation under UV light. The light efficiency will be optimized based on two different methods. The first method is via modification of standard TiO2 with plasmonic silver nanostructures. These nanostructures display surface plasmon resonance (SPR) in the UV part of the spectrum, which entails a significant electric near-field enhancement. The build-up of these intense local electric fields allows an efficient concentration of the incident photon energy in small volumes near the nanostructures. Since the rate of electron-hole pair formation is proportional to the intensity of the electric field, a drastic increase in charge carrier formation occurs. In order for this plasmonic "lens effect" to work, an energy match between the bandgap energy of the semiconductor and the energy associated with the SPR is required, which is the case for silver nanostructures. A second method to increase the UV light efficiency is by means of an innovative reactor design. A scrubber will be used to transfer the contaminated air flow to the aqueous phase leading to an enrichment of the VOCs in the aqueous phase. After that, the VOCs will be photocatalytically degraded in the aqueous phase, which is a better known concept than degradation in gas phase. The VOC degradation will occur via an optimized reactor design in which a UV transparent capillary tube is coated on the inside with photoactive material. This tube will be winded around a UV light source. In this way, there is a large contact time between pollutant and catalyst. Furthermore, this design ensures an active washing of the catalyst surface avoiding possible deactivation of the catalyst.