zwevende – -Translation – Keybot Dictionary

Spacer TTN Translation Network TTN TTN Login Deutsch Français Spacer Help
Source Languages Target Languages
Keybot 6 Results  www.mumm.ac.be
  Untitled Document  
PN (stikstofdeeltjes) in zwevende stof en de bodem
PN (particulate nitrogen) in suspension and in the sea bed
PN (azote particulaire) dans la matière en suspension et le sol marin
  Untitled Document  
POC (organische koolstofdeeltjes) in zwevende stof en de bodem
POC (particulate organic carbon) in suspension and in the sea bed
POC (carbone organique particulaire) dans la matière en suspension et le sol marin
  Untitled Document  
Deze gegevens zullen na de campagne vergeleken worden met de beelden van de satelliet, die een interpretatie van het chlorofyl gehalte en de zwevende deeltjes in het water (zand, diertjes, plantjes) naar de aarde stuurt.
A l'autre bout du navire, dans les laboratoires et sur la plage arrière, des scientifiques jonglent avec le Remotely Operated Vehicle du Renard Centre for Marine Geology (RCMG) de l'université de Gand. Grâce à cet engin ils partiront à la recherche des coraux d'eau froide dans canyon « Guilvinec », dans les profondeurs du golfe de Gascogne. Depuis quelques années, ces coraux focalisent l'intérêt de la recherche mondiale en géologie marine. Ces coraux sont en effet de vraies archives climatologiques. Il est donc très intéressant de les regarder de près.
  Untitled Document  
Op basis van een grote dataset van in situ metingen tonen wij aan dat [SPM] het nauwkeurigst kan worden bepaald door de meting van de verstrooiing van rood licht in achterwaartse richtingen (terugverstrooiing). Bovendien blijkt de relatie tussen [SPM] en terugverstrooiing afhankelijk van de samenstelling van zwevende stof, wat mogelijkheden biedt tot het verfijnen van teledetectie-algoritmen voor [SPM].
Based on an extensive in situ dataset, we show that [SPM] is best estimated from red light scattered in the back directions (back scattering). Moreover, the relationship between [SPM] and backscattering is driven by the composition of suspended particles, offering opportunities to improve [SPM] retrieval algorithms. We also show that SEVIRI successfully retrieves [SPM] and related parameters such as turbidity and vertical light attenuation in turbid waters. Even though uncertainties are considerable in clear waters, this is a remarkable result for a meteorological sensor designed to monitor clouds and ice, much brighter targets that the sea! On cloud free days, tidal variability of [SPM] can now be resolved by remote sensing for the First time, offering new opportunities for monitoring of turbidity and ecosystem modelling. This work allows us to maximally prepare for the planned coming of geostationary ocean colour satellites, which are expected to revolutionize optical oceanography.
  Untitled Document  
De in zeewater aanwezige zwevende materie zoals sedimenten, fytoplankton, zooplankton, bacteriën, virussen en detritus, worden collectief "suspended particulate matter" (SPM) genoemd. In kustwateren varieert SPM sterk in ruimte en tijd door wind- of getijdenwerking.
Particles suspended in seawater include sediments, phytoplankton, zooplankton, bacteria, viruses and detritus, and are collectively referred to as suspended particulate matter, SPM. In coastal waters, SPM varies strongly in time and space due to tides and winds. The dry mass concentration of SPM [SPM], can be estimated from optical sensors deployed in situ or from space, allowing to cover large temporal and spatial scales. So called polar-orbiting ocean colour satellites, for example, have been used for mapping of [SPM] on a global scale since the late 1970s with a frequency of one image per day for the North Sea area. This sampling frequency is, however, too low to resolve the strong spatio-temporal variations of [SPM]. This work aims to advance in situ and space-based optical techniques for [SPM] retrieval by investigating the natural variability in the relationship between [SPM] and light scattering by particles and by investigating whether the European geostationary meteorological SEVIRI sensor, which provides imagery every 15 minutes, can be used for the mapping of [SPM] in the southern North Sea.